忍者ブログ
Science News
[13]  [14]  [15]  [16]  [17]  [18]  [19]  [20]  [21]  [22]  [23
×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

TASER Seeks to Zap Safety Concerns

TASER International develops new technology, touts safety in wake of Canadian deaths possibly linked to police use

 
 
SHOCKING: The next generation of TASER—the eXtended Range Electronic Projectile (XREP)—is being designed to fire wireless probes as far as 65 feet from a half-ounce (14–gram) cartridge.

The recent deaths of three men in Canada after police stopped them in their tracks with TASER guns have resurrected the debate over use of the weapons, which utilize electric pulses and strong muscle contractions to incapacitate people considered to be a threat to officers and the public.

The three separate cases are still under investigation, but the association between them and the technology has led to misconceptions about the way these weapons affect the body, law enforcement and TASER International say.

TASERs, which represent the lion's share of all electronic-control devices used by law enforcement, work by shooting two metal probes that release electricity into the body, causing neuromuscular incapacitation. Generally, the victim feels as though "he is in a full-body charley horse," but does not lose consciousness, says Steven Ashley, a former deputy sheriff in Livingston County, Mich., who retired from the force in 1989 and is now a law enforcement consultant. "They short-circuit the electrical signals in the body."

The deaths in Canada, however, have some local politicians calling for a review of how the weapons are used, and some health care officials say these weapons are not nearly as benign as portrayed. A report released earlier this year by the Heart Rhythm Society, a Washington, D.C., organization of cardiac arrhythmia doctors and patients, found that electronic-control devices like the TASER may trigger "significant arrhythmias" in patients with pacemakers.

But Ashley, a senior master instructor for Scottsdale, Ariz.–based TASER International and an instructor for its competitor, Stinger Systems, Inc., in Tampa, Fla., disagrees that TASER weapons damage the heart or other internal organs. "The energy they emit follows the grain of the muscles and impacts sensory motion and the motor control," he says. "It doesn't go off searching for internal organs." The most common lingering effect after the muscle contractions, he says, is muscle fatigue lasting a few hours. But, he admits, "you don't know exactly how each individual will react." Other variables determining victims' injuries are how hard they fall and where they land.

TASERs contain two probes, each with a half-inch metal tip roughly the size of a fishhook that is designed to latch onto a target's body and / or clothes. The probes are packed into cartridges and are propelled at their target using compressed nitrogen. The probes travel at 180 feet (55 meters) per second when fired, spread one foot (30 centimeters) apart for every seven feet (2.1 meters) they travel and must land at least four inches (10 centimeters) from one another on the intended target to complete the circuit and channel an electric pulse into his or her body. If the probes are less than four inches apart, the TASER will deliver a shock, but not incapacitate the person.

A TASER uses up to 50,000 volts of arcing voltage to deliver a charge via the tips of its probes. Ashley, however, says TASERs are typically programmed to fire for five seconds, not enough time for a full discharge—the cycle can be stopped in less than five seconds if the weapon's safety lever is moved into the "safe" position. The high voltage is available so that a TASER's charge can reach across a gap of about two inches (or five centimeters) of air or clothing to connect with the victim's body; the probes do not have to actually penetrate skin to work. When fired, the TASER X26 weapon, a model commonly used by law enforcement, operates at 19 pulses per second at a pulse duration of 100 microseconds to deliver an average current of 2.1 milliamps. (Editor's note: in an earlier version of this story, it was mistakenly reported that a TASER has a peak current of 3 amps.) Put in perspective, a University of Illinois at Urbana-Champaign study indicates that at 20 milliamps, breathing becomes labored. At 100 milliamps, ventricular fibrillation of the heart—an uncoordinated twitching of the walls of the heart's ventricle—occurs.

"The TASER is the only weapon the police have that doesn't rely on pain compliance," Ashley says. Batons, beanbag rounds and rubber bullets can be used as nonlethal law enforcement tools, but they are only effective if a suspect ultimately surrenders. Although such weapons are often referred to as "less lethal," Ashley disagrees with this characterization. "Nothing is risk-free," he says, adding, "A TASER is not less lethal, it's nonlethal."

There are hitches. For instance, TASERs will not work properly in situations where the probes get caught in a target's clothing too far from the body to deliver a jolt, only one probe makes contact or the wires connecting the probes to the gun are damaged. "We need that tool that will absolutely incapacitate someone for 10–to–15 seconds without longterm effect," Ashley says. "TASER gets us closer to that than any other weapon has."

An investigation into the mid-October death of Robert Dziekanski, 40, at Vancouver International Airport after Royal Canadian Mounted Police used a TASER to subdue him will either confirm or contradict Ashley's view. Investigations are also underway into the deaths a month later of Robert Knipstrom, 36, in Chilliwack, British Columbia, and Howard Hyde, 45, in Dartmouth, Nova Scotia, after they were TASERed.

The technology on which current TASER weaponry is based was created in the 1970s by physicist John H. "Jack" Cover, a former director of science and engineering for the space division of aircraft maker North American Aviation (which Boeing bought in 1996). Cover's invention, however, required the use of gunpowder to discharge its probes and was considered a firearm. Cover named his invention "TASER" after a fictional weapon in Victor Appleton's 1911 adventure book Tom Swift and His Electric Rifle.

TASER International's first widely used product—the AIR TASER Model 34000, which ran on a nine-volt battery—hit the market in late 1994. When the trigger on the 34000 was pressed, it would administer a charge for 30 seconds during which the shooter could place the device on the ground and get a safe distance away from the person receiving the jolt, says Steve Tuttle, the company's vice president of communications.

For the Advanced TASER M26 that debuted in 1999, the company tweaked the number of pulses per second and their duration in order to achieve a higher level of muscle incapacitation. The goal was to do a better job of stopping individuals aggressive enough to overcome the previous model's charge, which Tuttle says stopped 84 percent of people. The M26, which ran on eight AA batteries, also recorded the time and date each time it was fired as a means of curbing misuse.

The X26 followed in 2003 and was 60 percent lighter and smaller than its predecessor, in part because it ran on two lithium ion camera batteries. In addition to having two LED lights to illuminate a target, the X26 also featured a new waveform that, Tuttle says, more efficiently delivered a shock to the body. Whereas the range of earlier TASERs was 15 feet (4.6 meters), the X26's probes could travel as far as 35 feet (10.5 meters).

The next generation TASER—the eXtended Range Electronic Projectile (XREP)—is being designed to fire wireless probes as far as 65 feet (20 meters) from a half-ounce (14-gram) cartridge that fits into any standard 12-gauge shotgun. TASER plans to start training instructors in the XREP's use by the middle of next year. Another new weapon under development is the Shockwave, which Tuttle refers to as "an area-denial system" that simultaneously fires six TASER cartridges up to 25 feet. Scheduled for availability late next year, the Shockwave is designed to be used by military and Homeland Security personnel at airports, checkpoints and other open spaces.

The company expects it will need to weather a storm of scrutiny in Canada in the coming months similar to what it experienced in 2005, when the U.S. Securities and Exchange Commission launched an informal inquiry after reports questioned the weapon's safety. That inquiry was dropped the following year.

PR

Letting Microbes Do the Dirty Work—Not to Mention Boost Energy, Reduce Greenhouse Gas Emissions

Microbes can convert oil into methane and scientists may have figured out how to harness the process

 
oil-eating-microbes 
MICROBES AT WORK: These microbes, stained with a fluorescent dye for visibility, consume oil deep below the earth, eventually converting it to methane.

Millions of years ago, the microbes in river bottoms disappeared into the earth, buried by successive layers of sediment. Over hundreds of millions of years, these microbes—syntrophic bacteria and methanogenic Archaea—evolved to thrive in this underworld, slowly consuming the rich hydrocarbons that surrounded them in the form of oil. As a result, a large amount of the planet's petroleum stash has been ruined, becoming instead a "hot spot" for deep microbial life that consumes it and taints the rest with sulfur and other byproducts. Over time, however, these microbes finish their feast, leaving behind oil transmuted into methane—another, cleaner fossil fuel. Now researchers think they may have figured out how this process works and how to accelerate it to create a vast new energy resource.

"You're looking at an increase equivalent to the same amount of energy as conventional oil reserves in the world today," says petroleum geologist Steve Larter of the University of Calgary in Canada, a member of the team investigating the microbial process. "It's potentially a game changer if it can be demonstrated."

Larter and his colleagues used test tubes to demonstrate exactly how the microbes, over time, convert oil into methane. The tubes, laced with nondegraded oil from the North Sea and microbes from present-day river sediment that are accustomed to living without oxygen, produced the same levels of methane and other byproducts typical of degraded or "heavy" oil in reservoirs worldwide, the researchers report in Nature.

By fermenting unrecoverable heavy oil into methane, the microbes could boost energy supplies; methane can be burned in power plants to produce electricity. "At a conventional petroleum reservoir, you get 35 percent of the oil out of the ground and 65 percent remains in the ground," says microbial ecologist Ian Head of Newcastle University in England, another team member. "The equivalent figure for gas is 70 percent and 30 percent. If we can convert oil to methane, then the recovery of energy goes up."

A trillion cubic feet of methane can be generated from a billion barrels of heavy oil, Larter estimates, and the world contains at least six trillion barrels of such oil. "It will take less energy to recover," team member and Newcastle organic geochemist Martin Jones says. Plus, just knowing how the microbes operate allows the pinpointing of the better oils within a given field. "Biodegradation models are actually key for targeting the best quality oils, or sweet spots, in biodegraded oil fields," notes team member Jennifer Adams, a Calgary geologist.

Further, burning methane, itself a potent greenhouse gas, to generate electricity produces less carbon dioxide than burning oil or coal. "It's not environmentally neutral but it's certainly an improvement," Head notes.

The researchers plan to determine if this microbial conversion can be boosted in existing reservoirs by 2009 by adding nutrient-rich wastewater to them. "The microorganisms feed on the oil hydrocarbons. We just added some fertilizer, including nitrate and phosphate to enable them to grow faster," Head says. "This is a bit like giving the microbes a balanced diet."

If giving the microbes a balanced diet proves effective, then a vast new store of climate-friendlier fossil fuel might become available. But that gas will have to be recovered quickly after the microbes do their work. "Methanogenesis is still active today or was until recently," Adams notes. "Because there is very little gas found in these reservoirs, that also means that most of the generated gas leaked out of these reservoirs."

Farther down the road, direct production of hydrogen—a potential energy carrier with few known environmental drawbacks—might be possible. "Zapping the methanogens and accelerating the syntrophs, plus some clever engineering, may enable hydrogen production—but that's much more difficult, " Larter says. "If you could recover molecular hydrogen from the reservoir, you've got a zero-carbon energy source from fossil fuel."

In the meantime, the process shows the power of microbes to literally change the world. "Most of the world's oil has been generated by microorganisms over geologic time scales," Head says. "Very small microorganisms have global effects."

The Secret to a Longer (Worm's) Life: A Breath of Poison Gas

Small quantities of toxic hydrogen sulfide in the air lengthen life in a nematode by 70 percent

 
Caenorhabditis elegans 
SULFUR SURPRISE: Rather than sending a nematode into suspended animation, an atmosphere with boosted levels of hydrogen sulfide extends its life by 70 percent.

Consider the life of a nematode: Caenorhabditis elegans, a diminutive, soil-dwelling, hermaphroditic worm that has had its entire genetic code (all base pairs) mapped. Coupled with its reproductive potential, this creature makes a perfect lab specimen. Each worm can expect to live for only a few weeks—unless it is lucky enough to reside in an atmosphere laced with small quantities of hydrogen sulfide. At concentrations of just 50 parts per million, the toxic gas can extend worm longevity by as much as 10 days.

"They were able to withstand higher temperatures than animals that did not have hydrogen sulfide and they were more long lived," says biologist Mark Roth of the Fred Hutchinson Cancer Research Center in Seattle, who teamed with Hutchinson biologist Dana Miller on the study. "They lived 70 percent longer, which is considerably longer. If you add 70 percent to your own life that's a lot."

There is currently no reason to believe that hydrogen sulfide, which is deadly at high concentrations, will have the same effect on humans, although Roth and others have shown that it can put mice into a state of suspended animation. Roth and his colleagues are currently assessing the safety of low concentrations of the gas in humans in order to assess its potential to place removed organs into a state of suspended animation for longer, better storage prior to transplant or even to put critically injured patients into the state to enable more time for lifesaving interventions. 

That potential remains unproved and, in this case at least, H2S has rendered surprising results. Contrary to Roth's expectations, the worms thrived instead of entering a suspended state  when exposed to the gas. And when subjected to high temperatures (95 degrees Fahrenheit, or 35 degrees Celsius), those in the more sulfurous atmospheres lived eight times longer than their peers.

The biologists are not sure exactly why this occurs but they did discover that the benefits of  H2S were lost when they removed the gene known as sir-2.1linked to long life. "It's a demonstration of the requirement or need for that gene product to have sulfide work its magic," Roth says.

The ultimate goal, he says, is to understand the role H2S plays in maximizing survival, whether in worms, mice or, potentially, people. But the long history of the healing effect of natural sulfur springs—volcanic fissures that emit sulfurous water and gases, such as  H2S—attests to the fact that the tiny nematode is certainly not the first hint that hydrogen sulfide might have beneficial properties.

Shake, Rattle and Respond: Early Warning System for Earthquakes

By analyzing earthquakes when and where they strike, a computerized system could save lives 

seismograph 
EARLY WARNING: As little as seconds advance warning of earthquakes could save lives by prompting automatic shutdown of dangerous infrastructure, such as gas pipelines.

When an earthquake strikes, seismic waves spread from the epicenter, following the patchwork quilt of faults and geology in California, for example. The violent shaking these waves may trigger can topple buildings, rupture water mains and wreak havoc on industrial infrastructure. But by making quick computer analyses in seismographic stations near the epicenter, warnings can be relayed in seconds, allowing people to take safety precautions and critical infrastructure to be shut down, scientists reported this week at the fall conference of the American Geophysical Union in San Francisco.

"What we're doing with early warning is predicting the ground motion after we know the earthquake is underway," says seismologist Richard Allen of the University of California, Berkeley. "Any computerized system can start to do things very rapidly, rapidly enough so we can implement our response before the ground stops shaking."

Such a system, developed by Allen and his colleagues, is currently being tested in California's roughly 300 seismometer stations and provided 10 seconds of warning for the San Jose temblor that measured 5.4 on the Richter scale on October 30.

Japan and Europe already have such warning systems, which have proved useful in preventing fires, one of the major secondary impacts of powerful earthquakes. "Actions that can be made to prevent fires is just to have [an] automatic system to switch off gas supply, also electricity," says geophysicist Paolo Gasparini of the University of Naples–Federico II of the systems operating in that Italian city as well as in Istanbul and Bucharest.

The Japanese system, which began operation on October 1, has already provided warnings from two large quakes. "In both cases, the information was disseminated successfully," says seismologist Osamu Kamigaichi of the Japan Meteorological Agency. "False alarms—very, very few."

But Allen says that California would have to build an additional 600 stations and upgrade its existing network to create a robust early warning system for the state, which could cost as much as $30 million.

Such a system could provide as much as a minute's notice for the Bay Area, for example, if an earthquake struck in the Mendocino triple junction, a highly active seismic conjunction where three plates meet off the northern California coast. "The final goals of the project are to assess the amount of warning time a system like this could provide and look forward to what might be necessary," Allen says. "Even if it's a very small amount of time, it could be useful."

Thunder, Hail, Fire: What Does Climate Change Mean for the U.S.?

The regional effects range from more wildfires in the west to stronger storms in the east. 

lightning-in-thunderstorm-over-denver 
STORMY WEATHER: Climate change impacts in the U.S. range from more severe summer thunderstorms in the east to more wildfires in the west.

The U.S. heartland can look forward to hotter, wetter summers, according to the latest climate research. Global warming will cause more severe thunderstorms—convective cloud fronts that could produce wind gusts of 58 miles (93 kilometers) per hour, 0.75-inch (1.9-centimeter) size hailstones and even more frequent tornadoes—in the region, according to research led by atmospheric scientist Robert Trapp at Purdue University. At the same time, according to independent environmental consultant Kristie Ebi, heat waves like the one in Chicago that killed 700 people in 1995 will become more commonplace.

"Climate change is projected to increase the frequency, intensity and duration of heat waves in the Midwest," says Ebi, an Intergovernmental Panel on Climate Change (IPCC) report author. "In addition, heat waves are projected to be hotter."

Of course, the U.S. Midwest is not the only region of the world that is being affected by climate change. Signs of global warming are beginning to appear everywhere: from runaway ice melt in the Arctic to slowly drowning islands in the Pacific. "Changing climate conditions are already happening," says Eileen Claussen, president of the Pew Center on Global Climate Change, which today released a report on regional impacts in the U.S. "It is clear that there is an immediate need for strong national and international policy action."

The reports findings, in addition to increased heat waves, include:

Western Wildfires—The increasingly destructive and widespread fire seasons of recent years are likely to continue due to a combination of increased drought and land development encroaching on naturally burning landscapes, along with a climate change–induced fuel boom (enhanced plant growth and a shift to more woody species) exacerbated by fire-suppression efforts leading to more abundant plant matter to fuel violent blazes, according to ecologist Dominique Bachelet of Oregon State University in Corvallis and The Nature Conservancy. "The deadly combination of human behavior and climate change means we will likely see more wildfires like those in 2007," she says.

Gulf Coast Swamped—Human engineering efforts such as levees have reduced the ability of the wetlands of Louisiana and other Gulf Coast states to keep pace with subsiding land and rising sea levels, according to coastal scientist Robert Twilley of Louisiana State University in Baton Rouge. "If soil formation cannot keep pace," he says, "inundation of wetlands from rising seas will essentially drown these landscapes, and wetlands will convert to open waters." That, in turn, will make nearby communities far more vulnerable to the effects of storm surges, such as the one caused by Hurricane Katrina in 2005.

"Dead Zones" Deader—One of a number of large and growing seasonal areas in bodies of water from which all oxygen has been leeched drives the degradation of Chesapeake Bay. A "dead zone" is a place devoid of the fish and bottom dwellers, such as the crabs and other shellfish, for which the bay is famous. Marine scientist Donald Boesch, president of the University of Maryland Center for Environmental Science, warns that climate change will also complicate the already difficult task of restoring this important watershed and food source. "Climate change impacts are not straightforward," he says, "but are multiple and interactive."

And the Pew report is not the only research to examine regional impacts.

Stronger Storms—Much of the country will experience severe thunderstorms, but major eastern and southeastern cities are likely to see the largest jumps in storm frequency, according to Purdue's Trapp—a finding buttressed by a NASA study earlier this year. "Our analysis suggests the possibility of an increase of up to 100 percent or more in locations such as Atlanta and New York," the researchers wrote in this week's Proceedings of the National Academy of Sciences.

As a result, these experts say efforts to combat climate change must focus not only on reducing greenhouse gas emissions that drive global warming but also on adjusting to the changes already underway. "The challenge we have with adaptation is trying to understand the specific impacts of climate change on a region," Boesch says. Nevertheless, "adaptation is going to be essential because we cannot avoid climate change entirely."

Calendar
12 2025/01 02
S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Timepiece
タグホイヤー フォーミュラー1 ドリームキャンペーン
Blog Plus
SEO / RSS
Podcast
by PODCAST-BP
New TB
Bar Code
Data Retrieval
Oldest Articles
(09/30)
(09/30)
(09/30)
(09/30)
(09/30)
Photo Index
Reference
Latina




RSS Reader
無料RSSブログパーツ

Misc.
◆BBS


◆Chat


◆Micro TV


Maps



顔文字教室




Copyright © Sci All Rights Reserved.
Powered by NinjaBlog
Graphics by 写真素材Kun * Material by Gingham * Template by Kaie
忍者ブログ [PR]